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ABSTRACT

In §§1-5, we classify n-point extensions of ergodic automorphisms up to factor
orbit-equivalence (which is the natural analogue of factor isomorphism). This
classification is in terms of conjugacy classes of subgroups of the symmetric
group on n points, and parallels D. Rudolph’s classification of n-point
extensions of Bernoulli shifts up to factor isomorphism. In §6, we give another
proof of A. Fieldsteel’s theorem on factor orbit-equivalence of compact group
extensions.

§0. Foreword

Sections 1-5 of this paper are contained in the author’s Ph.D. thesis [4],
written under J. Feldman, and were circulated in a preprint titled Classification
of Finite Extensions of Ergodic Automorphisms up to Factor Orbit Equivalence.
The last section is based on a recent observation that the previous techniques
extend to give another proof of A. Fieldsteel’s theorem [3] on factor orbit-
equivalence of compact group extensions.

§1. Introduction

Let S and S’ be ergodic measure-preserving automorphisms of the Lebesgue
spaces (Y, 4,v) and (Y', €', v'), respectively. (Throughout this paper, we
identify sets and maps modulo sets of measure zero.) For y € Y, we define

Os(y)={S"y: n €Z}.

We say that S and S’ are orbit equivalent if there exists a measure-preserving
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isomorphism ¥: (Y, €, v)— (Y, €', v') such that for a.e. y E Y,
W(O0s(y)) = Os(¥(y)).

In 1958, H. Dye [2] proved that any two such S and $' are orbit equivalent.

Now let B be an S-invariant sub-sigma-field of € such that the quotient space
is again a Lebesgue space, ie., T=S$ | R is a “factor” of S. Similarly, let
T = S’, B’ be a factor of §'. We consider the following question (posed by
J. Feldman): Can ¥ be chosen to send B to $'? If so, we say that (S, T) and
(§', T'y are “factor orbit-equivalent” (in analogy with a factor isomorphism,
where ¥ would have to be an isomorphism between S and S’ sending % to &’).
The ergodicity of § and §' implies that almost all atoms of % have the same
cardinality, call it n(%), and similarly for 8’. An obvious necessary condition is
n(MB)= n(R’'). Is this sufficient? It turns out that the answer is no, even if the
atoms are finite {also in all other cases). We obtain a classification of the
inequivalent possibilities, in terms of conjugacy classes of transitive subgroups of
the symmetric group &, on n points, paralleling D. Rudolph’s results [8] for the
case when S and S’ are Bernoulli shifts, where he got a classification up to factor
isomorphism, rather than factor orbit-equivalence.

Now drop ergodicity of S, but still insist that T be ergodic. The classification
has a natural extension to this case: the subgroups of &, which are involved need
no longer be transitive. (In the general case, the orbit equivalence ¥ between §
and S’ is only required to preserve the null sets, not necessarily the measures; in
the ergodic case, this already implies that ¥ is measure-preserving.)

In order to carry out our classification, we will represent the system
(S, Y, €, B, v) with n(RB) = n (finite) as a skew product in the following manner.
We may assume (by making a factor isomorphism) that

[ Y=Xx{1,...,n},
B=sox{1,...,n}, o},
M ] E=dx=
v=pxp,

and
L S(x, )= (Tx, o (i), x€X, i=1,...,n,

where ¥ is the sigma-field generated by {1},...,{n}, T is an ergodic measure-
preserving automorphism of a Lebesgue space (X, &, i), x — o, is a measurable
map from X to %,, and p is a probability measure on {1,..., n} with p{{i})>0
for i=1,...,n If S is ergodic, then p({i})=1/n fori=1,...,n

Henceforth, we will consider systems (S, Y, €, B, v), or simply (S, T), of the
form given in (1). In this situation S is called a “n-point extension” of T.If S and
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S’ are two n-point extensions
S(x,i)=(Tx, 0. (i))
S'(x',i)y=(T'x", ol (i)
then (S, T) and (S, T’) are factor orbit-equivalent iff there is an orbit equival-

ence ¢: X — X' of T and T' and a measurable map x — 7, from X into %, such
that for a.e. x € X,

) TTxU'xT;‘ = Oloptxn

where the function x — s, mapping X — Z is such that for a.e. x€ X
& (Tx)=(T")*(o(x)),

and for x'€ X', s EZ we define

Ty " OOy if s >0,

3) Oy = 4 1d, if s =0,
{ -1 ! -1 ] -1 4

(Firywn)” = (T e) (otry i), if s <0.

If ¢ is an orbit-equivalence of T and T’ such that (2) holds, then the
map(x, i)— (¢(x), 7. (i)) is a factor orbit-equivalence of (S, T) and (S', T").
Conversely, if ¥: X x{1,...,n}— X'x{l1,..., n}is a factor orbit equivalence of
(S, T) and (S’, T'), then ¥ must be of the form ¥(x,i)=(¢d(x), 7. (i)) where
¢: X=X, 7y X— &, because ¥ must map B to B'. It then follows from ¥
being an orbit equivalence of S and S’ that ¢ is an orbit equivalence of T and
T', and that (2) holds.

Similarly, (S, T) and (S’, T') are factor isomorphic iff there is an isomorphism
¢: X— X' of T and T', and a measurable map x — 7, from X into &, such that
(2) holds and p'({r. ()} = p({i}) fora.e. x EX, i =1,..., n. In this case we have
s, = 1 a.e., which implies that o, ,u) = 04 a.€. and (2) reduces to

-1 __ s
TrOxTx = Og(x) a.c.

Our classification argument proceeds in three steps. First we define, for each
subgroup G of ¥,, what we will call the “G-interchange property” for an
n-point extension, and we show that for each n-point extension S of T thereisa
unique (up to conjugacy) G such that (S, T) is factor orbit-equivalent to an
n-point extension S’ of T' having the G-interchange property. Also, if (S, T) has
the G-interchange property, and H is conjugate to G, then there is an (S', T")
factor isomorphic to (S,T) having the H-interchange property. Next we
construct, for each subgroup G of ¥,, an n-point extension having the
G -interchange property. Finally, we make a slight extension of Dye’s theorem to
show that any two n-point extensions having the G-interchange property are
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factor orbit-equivalent. (In this argument we will assume some familiarity with
the proof of Dye’s theorem, as presented by W. Krieger [7].) Thus we wiil have a
one-to-one correspondence between factor orbit-equivalence classes of n-point
extensions of ergodic automorphisms and conjugacy classes of subgroups of &,.

K. Schmidt pointed out (in a conversation) that it can be seen from the
Connes-Krieger classification result [1] (in the outer periodic case), that any two
ergodic n-point extensions having the form given in (1), where each o, is a
power of the cyclic permutation (12 - - - n), are factor orbit-equivalent. If we let
G be the group generated by (12 - - - n), then in our classification, these n-point
extensions correspond to the conjugacy class containing G.

Using methods quite different from both those in [1] and those in the present
work, A. Fieldsteel [3] showed that if H is a compact metrizable group and S, S’
are ergodic H-extensions of measure-preserving automorphisms T, T, respec-
tively (i.e., S is defined on X X H by S(x, h) = (Tx, 0(x)h), where x > a(x)is a
measurable function from X to H, and S’ is defined similarly in terms of T’ and
another function x'— o’(x') from X' to H), then (S, T) and (S’, T') are factor
orbit-equivalent. Fieldsteel used a metric on sequences of symbols introduced by
D. Rudolph, and he gave an argument analogous to that of D. Ornstein’s proof
of the isomorphism theorem for Bernoulli shifts. In the present paper, we will
give a proof of Fieldsteel's theorem using Dye’s theorem methods.

§2. Setting up the correspondence between n-point extensions of ergodic
antomorphisms and conjugacy classes of subgroups of %,

Throughout this section, we will let § and S’ denote n-point extensions of the
ergodic automorphisms T and T":

S(x,i)=(Tx, 0. (i)
S'(xi)y=(T'x", 0y.(i)
as in the introduction.
Let us recall the following.

DEFINITION.  Suppose R is a measure-preserving automorphism of a
Lebesgue space and A, B are sets of positive measure. Then an invertible
bi-measurable map U: A — B is an R-isomorphism if for a.e. x € A, there is a
k., €Z such that Ux = R“x. (An R-isomorphism is necessarily measure-
preserving.)

The first step in the proof of Dye’s theorem, as presented in [7], is to observe
that if R is an ergodic measure-preserving automorphism of a Lebesgue space,
and A, B are sets with the same positive measure, then there is an R-
isomorphism from A to B. A basic idea in our extension of Dye’s theorem (to be
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carried out in §4) is to consider special T-isomorphisms which we define next.
The above observation will then motivate the definition of the G-interchange

property.

DEerFINITIONS. Let 0 €,, let U: A— B be a T-isomorphism, and let
x—> k. mapA to Z so that Ux = T*x for a.e. xEA. Then U is a T-o-
isomorphism for the n-point extension S, if for a.e. x € A, we have o = o),
where for x € X, s € Z, we define o,,, as in (3) with the primes removed; or,
equivalently,

S(x,i)=(T*x,a(i)) forae.x€A, i=1,...,n

For each subgroup G of &,, we say that (S, T) has the G-interchange property if
(i) for a.e. x € X, 0, €EG,
and
(i) if c€ G and A,BE€ o with u(A)= u(B)>0, then there is a T-o-
isomorphism from A to B.

ProposiTioN.  For each n-point extension S of T, there is a subgroup G of &.,
unique up 1o conjugacy, for which there is an n-point extension S' of T' such that
(S', T') has the G-interchange property and is factor orbit-equivalent to (S, T).
Furthermore, G is transitive iff S is ergodic.

PrOOF. As in [8], we begin by considering an ergodic component C of the
“full extension” S of T defined on (X X %,,u X q), where q({c})=1/|%.],
o€ Y., by

$(x, o) = (Tx, 0,0).
Since T is ergodic, C must have the form

C=U BT,

je
where {P;};, is a partition of X, and the I';’s are subsets of &, all having the
same cardinality. In particular, each I'; # ¢ ; so for each j € I, choose y; €T;. Let
i,k €1 Since S l C is ergodic, some power of $§ maps a subset of P; X {y,} of
positive measure to a subset of P, X {v,}. Hence there is some o € &, such that
ol; =T, and oy, = y, i.e., v;'T; = y¢'T.. Thus there is a set G C &, such that
v;'T; =G for all j € I Then we have

C=U PXxyG
jel
The above argument shows that

--1

y;' T;=%;'T;, forall €T,
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Hence
(/') = ¥'T,  forall % €T,
ie.

gG=G for all g € G.

Therefore G is a group.

Let 7, = y;' for x € P, j € I Define another n-point extension S’, by letting
T'=T and o,=T0,7;'. Then the map ¥: X x{1,...,n}—> X x{1,...,n}
defined by (x,i)— (x, 7. (i)} is a factor orbit-equivalence of (S, T) and (S', T).
(Actually, it is a factor isomorphism if we choose p'({i})= p({f '(i)}), which
turns out to be constant for fixed i, as x varies.) Also, § and §’ are isomorphic
viad: X X #, —> X x &, defined by (x,0)— (x, ,0).

We now verify that (S', T) has the G-interchange property. First observe that
$(C) is an ergodic component of ' and

$©)=4(U Bx%G)= U (Bixv'50)=XxG
jer jel
Since $' leaves X X G invariant, for a.e. x € X, $'(x,id) = (Tx,0) EX X G, i.e,
0,€EG. Nowfix o € G andlet A, B € o with uw(A)= u(B)>0. Then, because
$'| X x G is ergodic, there is an §"-isomorphism mapping A x {id} to B x {c}.
This implies that there is a T-o-isomorphism for $' mapping A to B. Hence
(S', T) has the G-interchange property.

Note that if there is a T-o-isomorphism from A to B and o (i) = j, then there
is an S’-isomorphism from A X{i} to B x{j}. Hence, if G is transitive, the
G-interchange property implies that S’ is ergodic, and therefore $ is ergodic.
Conversely, if G preserves a proper subset I' of &,, then X XTI is a nontrivial
invariant set for §', and thus § is not ergodic.

It remains to be shown that G is unique up to conjugacy. Suppose two factor
orbit-equivalent n-point extensions S of T and S§' of T' have the G- and
H-interchange properties, respectively. Then there must be maps¢: X = X'
and 7.,: X —> &, so that (2) is satisfied. Let ZC X and 7 € ¥, be such that
u(Z)>0and 7, = 7 for all x € Z. We will show that H = 7G17'. Let g € G, and
let A,BCZ with u(A)=pu(B)>0. Let A'=¢(A), B'= ¢(B). Since S has
the G-interchange property, there exists a T-g-isomorphism U: A — B for §.
Let U': A'— B’ be defined by U'(x")= ¢Up '(x") for x'€ A’. Then U’ is a
T' — rgr~"-isomorphism for S'. Hence 7g7 ' € H, and since g € G was arbitrary,
1Gr~' C H. By symmetry 7' Hr C G. Therefore H = 1Gr™". O

PROPOSITION.  Suppose an n-point extension S of T has the G-interchange
property and G is conjugate to H. Then there is an n-point extension S’ of T such
that (S', T) has the H-interchange property and is factor isomorphic to (S, T).
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Proor. Let H=7G7"'. Then the n-point extension S’ of T determined by
o= 70,7 " and p'({i}) = p({r7'(i)}) has the required properties. O

§3. Construction of examples

Let G ={0.,...,0.} be a subgroup of ¥,. We now construct an n-point
extension § of T having the G-interchange property. Let (T, X, u) be a
(1/m,1/m,...,1/m)-Bernoulli shift, i.e. X ={1,...,m}*, u =1I".. g where g has
the distribution (1/m,1/m,...,1/m) and if x = (..., X1, X, X1,...)E X, then
(Tx); = x;.1. Let o, = g; for x € X such that x,=j. Let S(x,i)=(Tx, o, (i)),
x€X,i=1,...,n and let p{i)=1/n,i=1,..., n

ProposiTION.  The n-point extension S defined above has the G-interchange
property.

PrROOF. Let 0 € &, let (¢;)-a-u=j=si-1, (d)-u-1=j=1-1 be sequences of elements
of {1,..., m}, and let

C={xeX:x=¢,-(-1)=j=i-1)},

We will construct C'C C and D' C D with

k(€)= (D) 25 u(C)

and a T — o-isomorphism U: C'— D’ for §.
For each k €Z, let I, be the sequence of integers of length 21 — 1 given by

L=(@k-1D)I+1,Qk—1)I+2,...,Qk+ 1) -1).

For k >0, let C. be the set of x € C such that:

(@ (t)en=(d-u-n,...,di),

®) (x)ien# (C-g-1),...,C-1), if 0<h <k,

©) (x)en#(d-u-1y,...,di), f 0< h <k,

) o,0,_,' " 0,0,0,=0 where t =2kl -1,
Clearly (a) and (c) imply that the C.’s, k >0, are pairwise disjoint.

Let C'= U}, G, define U on C' by U, = T*for x € C,, let D, = UC and
let D' =U,_, D.. Since I, shifted to the left by 2kl units is I,_,, we have for
x€D,,
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(% ie1e = (C—mtyy o+ 5 Coy e vy Cimt)s

(x)ien Z (€1 ..+ » Cop.ooyaimr)  for 0< b <k,
and

(x)ien="{(d-g-1),...,do, ..., di_1).

Hence the D.’s, k >0, are pairwise disjoint subsets of D. This, together with
condition (d) in the definition of the C.’s, implies that U: C'> D’ is a
T — o-isomorphism.

We now compute u (C'). Note that conditions (a), (b) and (¢) in the definition
of the C,’s do not place any constraints on Xy Also, once we are given x;,
0=j=2ki—1, j# @2k — 1), there is exactly one choice of xa._1y to make (d)
hold. Thus, condition (d) reduces the measure of C' by a factor 1/m of what it
would be with only conditions (a), (b), and (c). Hence we have

1 .

m w(C),  if (c-g-1ysevnc)=(dog vy, ..., diy),
n(C) =

-2-% @ (C), otherwise.

Now suppose A and B are subsets of X with u(A)= u(B)> 0. Take cylinder
sets C and D of the form given in (4) such that

w(AN > (1-5) w(©),

w(BND)> (1 —éi_n-) w(D).

Let C' and D' and U be as constructed above. Then
#(ANC)>ip(C)

and

p(BND')>3u(D")=3u(C").
Thus we have

w[(ANCYNU(BN DY >:u(C)>0,

and

Ul[(ANC)N U (BN D"]isa T — o-isomorphism.
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Then by Zorn’s lemma (or even without it), it follows that there is a T—o-
isomorphism from A to B. 0

§4. Completion of the classification result

The one-to-one correspondence between factor orbit-equivalence classes of
n-point extensions of ergodic automorphisms will be established once we prove
the following.

THEOREM. Let G be a subgroup of .. Let S and S’ be n-point extensions of
ergodic automorphisms T and T', respectively:

S(x,i)=(Tx, o, (i)), x€X, i=1,...,n,
S i)=(T'x,al(i), XEX, i=1,....n

Then if (S, T) and (S', T') both have the G-interchange property, they are factor
orbit-equivalent.

This theorem is proved by modifying the argument in [7], being careful that
the constructed orbit equivalence ¢ between T and T’ also makes the
map¥: X x{1,...,n}—> X'x{1,...,n} defined by ¥(x,i)=(é(x),i) for a.e.
x€X, i=1,...,n a factor orbit-equivalence of (S, T) and (S', T'). For the
convenience of the reader, we will repeat here some of the definitions given in
[7], using essentially the same notation.

DermviTioNs. A T-array « is a quadruple of the form
&) a=(QAAC)U(C,")

where ) is a finite index set, A € &, A(-)is defined on () so that {A (w): w €}
is an ordered partition of A and U(-,-) is defined on { X () so that

U(w,0'): A(w)— A(w')is a T-isomorphism for w, ' € )
and
Ulw,0U(o,0')(x)=U(w,w")(x) forae.x€A(w), wo, 0"€Q.

For a T-array « in the form given in (5), we denote the partition {A (»): © € (O}
by 2., and for x € A(w), we let O,(x)={U(w, 0')(x): o' € Q}.

Now suppose we are given a T-array a of the form in (5), and for some w, €
we are also given a T-array

ﬁ =(A’A(m0)>B(‘)’ V(’))
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Then the refinement of a by means of B is a T-array
y=@QxAAC()W(,")

where
C(w,A)= U(w,, w)B(A), (0, A)EQ XA

and

W((w, 1), (o', A)(x) = Ulan, ©) V(A A)U(w, wo)(x)
forae. x € C(w,A), (w,4), (0 ,A)ENXA.
For our argument here we will also need the following.

DerFINITION. Let G be a subgroup of .. Then a T-array o=
Q,AA(C),U(-,')) is a T-G-array for S if there is a function r=
r.: A xQ— G such that for each (w, 0w )EOQXQ, U(w,0') is a T-r(w,0')
isomorphism for S.

Note that if a function r: ) x — G satisfies r = r, for some T-G-array a
with index set Q, then

6) ro', 0"y (o, 0")=r(o,o"), for w, 0, 0" € ().

Also observe that if a =(Q,A,A(-), U(-,-)) is a T-G-array and for some
@ EQ, B=(A, A(we), B(-), V(-,-)) is also a T-G-array, then the refinement
y=(QXxXA A C(-),W(,-) of @ by means of B must also be a T-G-array,
and we have

r((0,A), (0, A")) = r.(wg, @ )rs (A, A)r. (0, wo), for (w,A), (w",A")EQXA.

We now proceed with a series of lemmas, similar to those in (7], which will
lead to the proof of the above theorem. We assume throughout that G is a
subgroup of &., S, given by S(x, i) = (Tx, o, (i)), is an n-point extension of the
ergodic automorphism T of (X, &, ), and § has the G-interchange property.
We will omit the proofs of Lemmas 1 and 2, which are very easy, and just like the
corresponding ones in [7].

Lemma 1. Let (Q,A,A(:)) be a pariition of A € o into sets of equal
measure. Suppose r: QX Q— G satisfies (6). Then there is a T-G-array a =
Q,AA(-),U(,")) such thatr=r..

LEMMA 2. Let a be a T-G-array with index set {0,1}", let E € o, and let
¢ > 0. Then there exists, for some L €N, a T-G-array B with index set {0,1}"""
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which refines a and is such that
EE®,
(i.e. there is a union F of elements of Py such that w(E A F)<¢).

LemMa 3. Let ¢ >0 and let «a =({0,1}", A,A(+),U(-,-)) be a T-array.
Then for some L € N there exists a T-G-array y with index set {0, 1}"** such that
for x in some subset of A of measure greater than (1—¢)u(A), we have

0. (x)C O, (x).

ProOF. Fix @, €{0, 1}". We can partition A (w,) into sets F, ..., F, such that
for each o €{0,1}" and each h, 1 = h = k, there is some o = o(h, w) € G such
that U(wo, w) ' F, isa T — o-isomorphism. Then if L is sufficiently large, there is
some partition {B(A): A €{0,1}"} of A(w,) such that each F,, 1=h=k,
contains a collection of sets in {B(A): A €{0,1}"} whose union covers all but a
fraction less than ¢ of F,. Then by Lemma 1, there is some T-G-array
B =({0,1}, A(wo), B(*), V(*,)) Let A,={r €{0,1}*: B(A)CF,, some h =
1,...,k}, and let A,={0,1}* = A,. Then if A EA,, @ €Q, U(wo, w)| B(A) is a
T-o-isomorphism for some o = o(A;, w) € G. Also we have

(U BO)>0-emaen

AEAL

and consequently

,u[ U u U(wo,w)B()\)]>(1-£)p,(A).

welo )Y aem
We now define a new T-array & = ({0,1}", A, A(-), U(-,")) by letting
U(wi, @)| B(A): B(A)— U(ws, )B(A)
be defined for o €{0,1}" —{wo} by
U(w, )| BA)= Ulwo, @) B(A)  if A EA,
and
U(w,, w)‘ B(A)isany T-o-isomorphism  forany o € G,if A € A,

(For 0,0’ €{0,1}", U(w,©’) must then be defined by U(w, )=
U(wo, @) U(ws, ®) ") Let y be the refinement of & by means of B. Then y is a
T-G-array, and for x € U ,coy¥ U en, U(wo, @)B(A),

0.(x)= 0:(x)C O, (). O
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LemMA 4. Let &£ >0 and let o« =({0,1}", X, A(+), U(-,-)) be a T — G-array.
Then there exists some L €N and a T-G-array y with index set {0,1}"*" which
refines o and is such that

p{xeX: Tx € O,(x)}>1-=.

Proor. Note that if T-G-arrays in this lemma are replaced by T-arrays,
then we get lemma 6 in [7], which we will use together with our Lemma 3 in the
proof here. By lemma 6 in (7], there is an M, €N and a T-array § with index set
{0, 1}"*™ which refines « and is such that

w{ix EX: Tx € Os(x)}>1—¢/2.

Now fix w, € {0, 1}" and consider the restriction of § to A (w,) to be a T-array
with index set {0,1}*". Then, by Lemma 3, there exists an M,EN and a
T — G-array B on A(w,) with index set {0, 1}**™ such that

O, (x) N A (w5) C Oy (x)

for all x in some subset of A(w,) of measure greater than (1—g/2""")x

1 (A (@o)).
We take y to be the T-G-array obtained by refining « by means of 8. Then y
has index set {0, 1}"*", where L = M, + M, and

plreX: Tx e O,(xzul{xeX: Tx € O;(x)} N{x: Os(x)C O, (x)}]
>1-¢. l

Proor oF THEOREM. This proof is very much like that in [7], but here we will
have to be slightly more careful, because we are not working with a covenient
prototype (as the adding machine is in [7)).

Let (Ex)cen and (E)xen be generating sequences of elements of of andsf’,
respectively, in which each term appears infinitely often. We now produce
inductively sequences (a;)iex and (a?)ien of T-G-arrays (for S) and T'-G-arrays
(for S'), respectively, of the form

a =0, 11", X, A (), Ui(+, "))
and
a;=({0, 11", X", AL+ ), Ui(+,"))

having the following properties:
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(i) aafals] is a refinement of a;[al], | €N,
() ro=ra, lEN,

(ifi) Ex € P...., kEN,

) (iv) p{xeX: Tx €O, x)}>1-1/k, k EN,
(v) EiE Pu., kEN,
i) u{x'eX" T'x' €0, (x'}>1-1/k, k EN.

Suppose k =0 and a,a,,..., 0, a1, az..., 2y have been constructed to
satisfy the above properties. We then apply Lemmas 2 and 4 on the space
(X, A, u) to obtain auu+1)-3 refining aq, such that (iii) holds for k +1 and to
obtain @+ refining aqu.1y-3 such that (iv) holds for k +1. Next we apply
Lemma 1 to copy over these refinements of a. to the space (X', ', u’) to
obtain a3 refining aiy, and aiw..)-» refining aiu.1)-3 such that (ii) holds for
I =4(k +1)—3 and 4(k +1)— 2. Then we reverse the roles of (X, o, 1) and
(X', o', n"), applying Lemmas 2 and 4 to obtain aik.i-1 refining aix.— and
®4ge+1y refining adg.n)-y such that (v) and (vi) hold for k +1 and then applying
Lemma 1 to copy these refinements over to (X, &, ) to obtain ayy.n)-: refining
Qa2 And @guayy refining aquy- such that (i) holds for I =4(k +1)—1 and
4(k +1). Thus we obtain sequences of arrays (a)ien, (@i)ien having all the
properties listed above.

We now indicate how to get an orbit equivalence ¢ between T and T’ which
makes the map ¢ = X x{1,...,n}— X'x{1,..., n} defined by

®8) P(x,i)={d(x),1) forae.x€X, i=1,...,n

a factor orbit-equivalence between (S, T) and (S’, T'). For each A € o, let [A]
denote the equivalence class containing A in the Boolean sigma-algebra & /A of
measurable sets modulo null sets in &, and similarly for A’ € o'. Let d be the
metric on /N defined by d([A],[B]) = n(A A B), and define d’ similarly on
A'|N'. Then (4/N,d) and (4’| N, d') are complete metric spaces. Thus there is
an isometry ® from &//N onto o'/ N’ preserving all the Boolean operations (i.e.
® is a measure-preserving set isomorphism) determined by setting

P(A (o)) =[AUw)] for  €{0,1}", [EN.

Then there is a measure-preserving point isomorphism ¢: X — X' which induces

the set isomorphism @ (see [9], page 582), i.e. [¢(A)]=DP([A]) for A € .
Fix |EN and w;, w,€{0,1}"". We will show that ¢ 'Uli(w,, w)¢ =

U/(w, w,) a.e. on A, (w;). Let m > [ and write {0, 1}V = {0, 1}"® x {0, 1}". Let
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A €{0,1}. Then
(67U (@1, 02)0)Am (@1, 1) = ¢ 7 Ullw, 02)A (w1, 4)
=¢ A (@A)
=An(w2, )
= Ui(w1, 02)Anm (@1, 1),

with all of these equalities holding up to a set of measure zero. Since the
An (@, A)’s generate (as m and A vary) the restriction of & to A,{(w), this
implies that (¢ "' U@, @2)¢)(x) = U, (@, w2)(x) for a.e. x € A (w,). Thus, for
ae. xEX

©9) U'iw, w2)¢(x) = ¢ (Ui (@), @)x)
for | EN, w,, w,€{0,1}"”, where o, is such that x € A,(w,). By (7iv), for a.e.
xEX,
Or(x) ={U (@, w)x: | EN, 01,0, € {0, 1}"”, where w, is such that x € A, (w,)}.
Since each a; is a T-G-array, this implies that forae. x€X, i=1,...,n,
Os(x, i) = {(Ui(01, 02)x, rof@, @) (i)): L EN, 0, 0, €{0, 1},
where @, is such that x € A,(w:)}.

A similar statement holds for Os(x’,i). From this representation of Os(x, i),
Os(x', i), (7ii) and (9), it follows that for the map ¢, defined as in (8), we have

V(Os(x,i)) = Os(¥(x,i)) forae.x€X i=1,...,n |

§5. Some further remarks

Let us now consider the case of an uncountable extension of an ergodic
measure-preserving automorphism T of a Lebesgue space (X, s, ). Let
(X, 4, i) be another Lebesgue space, and let Y=XXX, B=sAxX, €=
A XA, v=puXg Let S be an ergodic measure-preserving automorphism of
(Y, €, v) preserving B of the form S(x, )= (Tx, I, (¥))forx € X, X € X where
(x,X)— J.(%) is jointly measurable, and for a.e. x €EX, J, is a measure-
preserving automorphism of (X, A, ). Suppose S’ and T" are of a form similar
to that of § and T. Then (S, €, B) and (S’, €', B"), or simply (S, T) and (§', T"),
are factor orbit-equivalent if there exists a map ¢r: X X X — X'x X' of the form

(10) ¥(x, 1) = (¢(x), 7 (X))
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where ¢: X — X' is an orbit equivalence of T and T',fora.e. x € X, 7.: X-—X
is a measure-preserving isomorphism, and for a.e. x € X,
1T = Torny  fA-aee.,
where the function x ~> s, mapping X — Z is such that for a.e. x € X,
o(Tx) = (T')*($(x)),

and for x' € X', s €Z, we define

Ty TieTls if >0,
(11) Tiexn = { 1d, if s =0,
(Tiryew) " (Tiryrwy (Taye) ", if s<0.

We now define a property in the same spirit as the G-interchange property.

DEeFINITION. A set C € € will be called a preservable strip of width « for some
a, 0sa =1, if for ae. x€EX, C.=CN({x}xX) has ji-measure a and if
A, B € o with u(A)= u(B)>0, then there exists a T-isomorphism U: A —> B
such that if x — k, is defined by Ux = T*x for a.e. x € A, then for a.e. x EA,
T wxC) = Cu, up to a set of z-measure zero, where we define J ., as in (11)
with the primes removed; or, equivalently, S “(C)=Cuy up to a set of
fi-measure zero. A nontrivial preservable strip is one of width a, where
0<a<l.

It is easy to see that preservable strips get mapped to preservable strips under
any factor orbit equivalence. Hence having a preservable strip of width « is an
invariant of factor orbit equivalence.

We now look at some examples.

PROPOSITION.  Suppose T is an ergodic measure-preserving automorphism of
(X, o, ), T is a Bernoulli shift on (X, 4, i) and S = T x T. Then (S, T) does not
have a nontrivial preservable strip.

ProOOF. Suppose 0< a <1and CC X X X is a preservable strip of width a.
Let R be the equivalence relation x ~ y if there exists some k € Z such that
T*x =y and S*C, = C, up to a set of -measure zero. Then R is hyperfinite.
(This is easy to see if we use the definition of a hyperfinite equivalence relation as
being the union of an increasing sequence of finite equivalence relations.) Thus
there exists some measure-preserving automorphism T of (X, s, u) such that for
a.e. x € X, {y: (x,y) € R} = O#(x). From the definition of C being preservable,
it follows that T is ergodic. Define a function mapping X to Z by x — k., where
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Tx = T*x. Since T is ergodic, for a.e. x € X, we have Tix# Tix if LiEZ, i#],
which implies that the sequence f,, f:,... defined by

(12) fi=kitkict -+ ke,

consists of distinct integers. Let S(x, £)=(Tx, T%). Then C is a X fi-ae.
invariant set for S. We will reach a contradiction by establishing the following
(where for convenience we write S and T instead of S and T).

LeMMA. Suppose T is an ergodic measure-preserving automorphism of
(X, A, ), Tis a Bernoulli shift on (X, o, i), and x — k, is a measurable function
from X to Z such that if f} is defined as in (12), for a.e. x € X, zero appears in the
sequence f, f% ... only finitely many times. Then the transformation S on (X X X,
A XA, uX @) defined by S(x, %)= (Tx, T“%) is ergodic.

Proor. Let C, D C X be cylinder sets (for the Bernoulli shift T) based on
coordinates —[,...,0,...,] and let A, B € &. We will establish the ergodicity of
S by showing that

13 limw 2 (1 X E)[(A X C)N §"(B X D)] = u(A)p(B)i(C)i (D).
For each n, we have
(AXxC)NnS"(BxD)= U [{Tx}x(CNnT"D)].

€T "ANB

Also, for a.e. x € X, any fixed integer occurs only finitely often in the sequence
fxf3 ... . Thus, given £ >0, there is some K such that for each x in some set
GCX with u(G)>1-¢, |fi|>21 for each nz K Now if |fi>2]
E(CNT"D)= g(C)i(D). Hence for n = K, we have

(n X Z)[(AXxC)NS"(Bx D)
=g (O)g(D)u(T"AN BN G)+f G(C N TED)dw(x).

T "ANBN(X-G)

Thus, for n = K|
(1 X @)[(A X C)N §™(B X D)~ 4(C)i(D)u(T"A N B)| < &.

Since T is ergodic,

|M2

.1 -
lim = 2 p(T"A N B)=p(A)u(B).

n=1

1
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Thus, for N large, (1/N)Z..,(n X 2)[(A X C)N S"(B x D)] is within 2¢ of
(A (BYE(CYa(D). Since £ was arbitrary, (13) follows. O

ReMARK. The same argument shows that if T is assumed to be weakly mixing
then S is weakly mixing; if T is mixing, then S is mixing. In the ergodic and
weakly mixing cases, it suffices to assume that for a.e. x € X, zero appears with
density zero in the sequence fi,f5,... .

The above system (S, T) can now be used to construct examples with very
special types of preservable strips. For convenience in describing these exam-
ples, we will replace X by X x{1,..., n} in the set-up given at the beginning of
this section.

PropPOSITION. Let T be an ergodic measure-preserving automorphism of
(X, oA, w), T a Bernoulli shift on (X, 4, i), x— o, a measurable map from X to
.. Let F be the sigma-field on {1,..., n} consisting of all subsets of {1,...,n}
and let p be the measure p({i})=1/n for i=1,...,n. Define S on
(X X (X x{1,...,n}), A X(AXF), ux(dXxp)) by

(14) S(x, (%, i) = (Tx,(T%, 0. (i))).

Then any preservable strip C for (S, T) is of width m/n for some m =0,1,...,n,
with p-a.e. C, being equal (up to a set of (jt X p)-measure zero) to a union of m of
the sets X x {1}, X x{2},..., X x{n} (which depends on x).

Proor. Let C be a nontrivial preservable strip for (S, T) and define R, T and
x — k, as in the proof of the preceding proposition. Let 6, = o, .y, Where g
is defined as in (3), with the primes removed. Then C is a u X (g X p)-a.e.
invariant set for the transformation $ on X x (X x{1,..., n}) defined by

S(x, (%, 1)) = (Tx,(T*z, 6, (i))).

Now consider the finite extension of T defined on X x{1,...,n}, X F, uXp)
by

(15) (x,i)— (Tx, &, (i)).
Let D C X x{1,...,n} be defined by
D ={(x,i): g[C. N (X x{i})] > 0}.

Then D is invariant under the map given in (15). Thus, by the ergodicity of T,
there is some m €{1,..., n} such that

card{i€{l,...,n}: (x,i)ED}=m for n-a.e. x,
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and we can write D as a disjoint union of sets Dy,..., D,,, where each D, is
contained in an ergodic component for the map in (15), and each D, satisfies

card{i €{1,...,n}: (x,i)eD;} =1 for w-a.e. x.
Let CC=CND, j=1,...,m, where
D, ={(x, (%, i)): (x,i)ED,—,fE)_(}.

Because D; is contained in an ergodic component for the map in (15), it follows
that C; is itself a preservable strip for (S, T). Let E; C X X X be given by

E; ={(x,%): (x,(%,i))€ C forsome i =1,...,n}.

Then E; is a preservable strip for (T x T, T). Hence, by the preceding proposi-
tion, E; must be (u X fi)-a.e. equal to X x X. Therefore we have C = D,

pX(a Xp)ae. 1

ProrosiTioN. Let (S,T) be as in the preceding proposition. Then X X
(X x{1,...,n}) can be covered by pairwise disjoint preservable sets for (S, T) of
width 1/n.

Proor. The space X x{1,...,n} can be covered by pairwise disjoint sets
D,,...,D, such that each D; is contained in an ergodic component for the
transformation on X x{1,..., n} given by (x,i)— (Tx, o, (i)), and for a.e. x and
each j=1,...,n card{i:(x,i)€D;}=1. For j=1,....n let C =
{(x,(%,1)): (x,i)E D;, ¥ € X}. Then C,, ..., C, are pairwise disjoint and each C,
is a preservable strip for (S, T) of width 1/n. a

The existence of preservable strips of width 1/n and no preservable strips of
widths other than multiples of 1/n for the systems (S, T) considered in the last
two propositions already gives (as we let n vary) infinitely many factor
orbit-equivalence classes. But note also that if (S, T) and (S’, T’) are of the form
given in (14) (with the same n, but possibly different x — o, and x'— oy and
possibly different Bernoulli shifts T and T') then any factor orbit-equivalence
between (S, T) and (S', T') must be of the form given in (10), with X and X’
replaced by X x{1,...,n} and X'x{1,...,n}, respectively, where for a.e.
x € X, there is some y, €, such that for i=1,...,n,

(X x{iP=X'x{x()} (u'xp)ae.
Therefore, a necessary condition for (S, T) and (S’, T') of the form given in (14)

to be factor orbit-equivalent is that the corresponding n-point extensions
(x,i)— (Tx, 0, (i)) and (x’,i)— (T'x, o (i)) be factor orbit-equivalent.
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§6. Factor orbit equivalence of compact group extensions

Let H be a compact metrizable group, and let T be an ergodic measure-
preserving automorphism of a Lebesgue space (X, &, u). Then an H-extension of
T is an automorphism S of Y = X X H of the form S(x, h) = (Tx, o (x)h), where
o: X - H is measurable.

THEOREM [3]. Let H be a compact metrizable group with Haar measure p, and
let S and S' be H-extensions of T and T' which are ergodic with respect to u X p
and ' X p, respectively. Then (S, T) and (S', T') are factor orbit equivalent.

Fix a right-invariant metric d on H, and let B(h; ¢) denote an open ball of
radius ¢ about h in H.

DerFiNITION. Let NCH. Let A Bego and let U:A—B be a T-
isomorphism. Then U is a T — N-isomorphism for the H-extension § if for a.e.
x € A, we have o(k,,x)E N, where k, satisfies U(x)= T*“x, and for x € X,
s €Z, we define o(s,x) as in (3) in §1.

DErNITION. Let o = (), A, A(-), U(-,-)) be a T-array, as defined in §4. Let
2 EQ, r:Q\{w}—H, £ =e(w)>0 for w EQ\{wy}. Then « is a T— H-
(r, wo, £)-array if for each w € Q\{wy}, U(wy,w) is a T— B(r(w); e(w))-
isomorphism.

LEMMA 1. Lete >0 and let (O, A, A(-)) be a partition of A € o into sets of
equal measure. Let wy € Q) and r: Q\{wo}— H. Then there is a T — H-(r, w,, £ )-
array o =(Q, A, A(-), U(-,")), where ¢ = e(w)= £ for all ® € Q\{wy}.

Lemma 2. Let a =(Q, X, A(+), U(+,")) be a T-array. Assume Q={0,1}".
Let €§>0 and let E€&€4. Then there exists a T-array B=
(A, A(wy), B(-), V(+,)), A={0,1}", such that the refinement ~y=
QXA X, €(), W(-,*)) of « by means of B satisfies the following conditions :

) wxeX:Txe0,(x)}>1-5

Gi) E € P, and

(ili) if we fix a choice of A\,E A, then for each A € A\{Ao}, V(Ao,A) is a
T — B(F(L), £)-isomorphism for some F(A)E H.

LemMma 3. Let a =(Q, X, A(+), U(-,:)) be a T— H —(r, wy, ¢ )-array. As-
sume Q={0,1}". Let £>0. Then there exists a T-array B =
(A, A(wo), B(-), V(+,*)), A={0,1}", such that the refinement ~y=
(QxA, X, €(+), W(-,")) of a by means of B satisfies the following conditions:

(i) There exists a subset A, C A with card A, >(1—£) card A such that for
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AEA, we(, U(w(,,w)\B(A) is a T—B(F(w, L), &)-isomorphism for some
F(w,A)E€ H with d(F(w, L), r(w))< e{w), and
(ii) For all ,A'€A, V(LAY is a T~ B(dy, & )-isomorphism.

elements of of and &', respectively, in which each term appears infinitely often.
Let n, satisfy 0 <, <1 and 2., n, <. Let g, be such that 0 < ¢, < 7, and if
g g, h h € Hwithd(g g)<e.,d(hh)<e thend(gh™, ghi") < n. We will
define inductively sequences (o), of T-arrays and T'-arrays,
respectively of the form

ar=({0, 11", X, A (), Ui+, )

and
ai={0, M, X", A ), Ui(+,+))

such that e, [af,] is a refinement of a[a’], [ =1,2,....

Foreach ! =1,2,..., we have one index w,; €{0, 1} such that A, ,(w,.,)C
Ai(woy) and Alu(wors))C Alwoy). Also, for [=1,2,... a[a}] is a T~ H-
(r[r'), wos, &)array, where r[ri}: {0, }""\{w,,}—>H and § =8 (w)>0 for
w €10, 1}M"\{w,,}. We let r(wo,) =idn, ri{we,) =idy, and & (w,,) =0. We will
carry out a construction such that for all @ in a subset of {0, 1}"” whose
cardinality is greater than (1—§,) of card({0, I}""), & (w)< &, where

8 =4 2&/3, if 1=3k-1,

{Ek/3, if [ =3k—2,
Eks if [ =3k,

k=1,2,....
For { =1,2,..., define 6,: X — H by

0, (x) = ri(wo,, ®)r(wo,, cu)*', x € Al(w).

We alternatingly refine the a; and « arrays using Lemmas 2 and 3. Assume
the arrays have been constructed for | =3k - 3. (We may take a, and a; to be
trivial arrays.) To go to the | =3k —2 stage, we apply Lemma 3 with £ such that
£ <& /3, and d(gidy)<£ and d(h, hy) <& imply d(gh h,)<e./3. Let Q=
{0’ l}NBkﬂ), Wy = Wo3k-3, {Oa I}N(Jk_Z) =) % A, Wy3k-—2 =~ (w(), )\0) for some A, € Ay,

Flw,A) for w €Q\{w)}, A EA,
r3k;2(w, A) = rgk-_z(w) for w eﬂ\{ﬁ)o}, /\E A‘,
idy for w =w,, A EA,
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and similarly for the “prime” space. By labeling appropriately, we may use the
same A, and A,, but different 7’s, for the construction of asc—, and ajx_,. Then
Ss—o(w, L)< g, /3 except for a set of (w,A) of cardinality less than &./3 of
card(QQ X A). Also d(ry 2w, A), r-A(®)) < y—s(w) for all (w,A)EQ XA, and
similarly for r’. Consequently, d(0;._(x), 83.—3(x)) < m:—, except for x in a set of
measure less than &,_,.

We now use Lemma 2 to get as,-, from as,_, with u{x € X: Tx € 0,,, _,(x)} >
1—-1/k, E, lé P..... and condition (iii) of Lemma 2 is satisfied with & chosen so
that Z<eg./3 and d(h,ho)<€& imply that d(gh, goho)<2e./3. Let Q=
{0, 1}¥C* 2 o= woak-2, {0, 1}V " =Q XA, @31 = (ws, Ao), and rs (@, A) =
ra—{@)F(A) for all (w, A)E QX A, where we let F(Ay) =idy. The a3y, array is
produced by refining a3« so that (iii) (but not (i) and (ii)) of Lemma 2 holds with
the same F(A) function. (This is possible by Lemma 1.) Then ry_i(w,A)=
Fa—2(@)F(A), 85-1(ow, A) < 2¢, /3 except for @ in a subset of cardinality less than
& /3 of card ), and 03._,(x) = 05, o(x) for all x.

Finally; we reverse the roles of the “prime” and “nonprime” arrays in the
preceding step. We apply Lemma 2 to get a3« (analogously to s, above) with £
chosen so that £ <e./3, and d(g g)<2&/3 and d{h h))<¢ imply that
d(gh, goho) < &,. Then apply Lemma 1 to get as, (analogously to aj._,). Then
83 (w, A) < &, except for @ in a subset of cardinality less than ¢, /3 of card (), and
03 (x) = 05._,(x) for all x.

Clearly 6,(x) converges a.e. to some 6(x). Let ¢: X— X' be the orbit
equivalence between T and T’ arising from the «;, ! arrays (as in §4). Then
(x, g)— (ox, 8(x)- g) is an orbit equivalence between S and S’. a
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