
ISRAEL JOURNAL OF MATHEMATICS, Vol. 57, No. 1, 1987 

FACTOR ORBIT EQUIVALENCE OF 
COMPACT GROUP EXTENSIONS AND 

CLASSIFICATION OF FINITE EXTENSIONS 
OF ERGODIC AUTOMORPHISMS 

BY 

MARLIES G E R B E R  
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA 

ABSTRACT 

In §§1-5, we classify n-point extensions of ergodic automorphisms up to factor 
orbit-equivalence (which is the natural analogue of factor isomorphism). This 
classification is in terms of conjugacy classes of subgroups of the symmetric 
group on n points, and parallels D. Rudolph's classification of n-point 
extensions of Bernoulli shifts up to factor isomorphism. In §6, we give another 
proof of A. Fieldsteel's theorem on factor orbit-equivalence of compact group 
extensions. 

§0. Foreword 

Sections 1-5 of this paper are contained in the author's Ph.D. thesis [4], 
written under J. Feldman, and were circulated in a preprint titled Classification 
of Finite Extensions of Ergodic Automorphisms up to Factor Orbit Equivalence. 
The last section is based on a recent observation that the previous techniques 
extend to give another proof of A. Fieldsteel's theorem [3] on factor orbit- 
equivalence of compact group extensions. 

§I. Introduction 

Let S and S' be ergodic measure-preserving automorphisms of the Lebesgue 
spaces (Y,~,v)  and (Y ' ,~ ' ,v ' ) ,  respectively. (Throughout this paper, we 
identify sets and maps modulo sets of measure zero.) For y E Y, we define 

Os(y)={S'y: n EZ}. 

We say that S and S' are orbit equivalent if there exists a measure-preserving 
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isomorphism rF: (Y, % v)-->(Y', ~', v') such that for a.e. y E Y, 

,v(os (y)) = os,(,I,(y)). 

In 1958, H. Dye [2] proved that any two such S and S' are orbit equivalent. 
Now let @' be an S-invariant sub-sigma-field of c8 such that the quotient space 

is again a Lebesgue space, i.e., T = S I@ is a "factor" of S. Similarly, let 
T ' =  S'] ~3' be a factor of S'. We consider the following question (posed by 
J. Feldman): Can xp" be chosen to send @ to @'? If so, we say that (S, T) and 
(S', T') are "factor orbit-equivalent" (in analogy with a factor isomorphism, 
where qt would have to be an isomorphism between S and S' sending @ to @'). 
The ergodicity of S and S' implies that almost all atoms of @ have the same 
cardinality, call it n(@), and similarly for g3'. An obvious necessary condition is 
n(g3) = n(gd'). Is this sufficient? It turns out that the answer is no, even if the 
atoms are finite (also in all other cases). We obtain a classification of the 
inequivalent possibilities, in terms of conjugacy classes of transitive subgroups of 
the symmetric group ~,  on n point s, paralleling D. Rudolph's results [8] for the 
case when S and S' are Bernoulli shifts, where he got a classification up to factor 
isomorphism, rather than factor orbit-equivalence. 

Now drop ergodicity of S, but still insist that T be ergodic. The classification 
has a natural extension to this case: the subgroups of ,9°, which are involved need 
no longer be transitive. (In the general case, the orbit equivalence q' between S 
and S' is only required to preserve the null sets, not necessarily the measures; in 
the ergodic case, this already implies that 1 t is measure-preserving.) 

In order to carry out our classification, we will represent the system 
(S, Y, (~, @, v) with n(g~) = n (finite) as a skew product in the following manner. 
We may assume (by making a factor isomorphism) that 

Y = X x { 1  . . . .  ,n}, 

= . d  x { {1  . . . . .  n } ,  , / , } ,  

(1)  cg = M x ~, 

v=/.~ Xp, 
and 

S(x, i)=(Tx,  o'x(i)), x E X ,  i = i , . . . , n ,  

where ,~ is the sigma-field generated by {1} . . . . .  {n}, T is an ergodic measure- 
preserving automorphism of a Lebesgue space (X, M, p.), x -~ o-x is a measurable 
map from X to Se,, and p is a probability measure on {1, . . . ,  n} with p({i}) > 0 
for i = 1 . . . . .  n. If S is ergodic, then p({i})= 1/n for i = 1 . . . . .  n. 

Henceforth, we will consider systems (S, Y, ~, g3, v), or simply (S, T), of the 
form given in (1). In this situation S is called a "n-point  extension" of T. If S and 
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S' are two n-point extensions 

S(x, i )=(Tx ,  o',(i)) 

S'(x', i) = (T'x' ,  o"~,(i)) 

then (S, T) and (S', T') are factor orbit-equivalent if[ there is an orbit equival- 
ence ~b : X + X'  of T and T' and a measurable map x --+ r~ from X into 5e such 
that for a.e. x E X, 

(2) rr, mr7 ~= cri,~,,(,~) 

where the function x --+ s~ mapping X--+ Z is such that for a.e. x E X 

( T x ) =  ( r ' ) "  ( 6 ( x ) ) ,  

and for x ' ~  X', s ~ Z we define 

(3) 

l (' ir >'<, , ) - "  ' - '  ' - '  • " ( < T < < , > )  , 

if s > 0, 
if s =0 ,  
if s < 0 .  

If ff is an orbit-equivalence of T and T' such that (2) holds, then the 
map(x, i)--+(4a(x),r~(i)) is a factor orbit-equivalence of (S, T) and (S', T'). 
Conversely, if ~ :  X × {1 . . . . .  n}--+ X' × {1 . . . . .  n} is a factor orbit equivalence of 
(S, T) and (S', T'), then qP must be of the form qt(x, i)=(cb(x),r~(i))  where 
4>: X--+ X', r<>: X--+ ~',, because xI* must map ~ to ~ ' .  It then follows from xI* 
being an orbit equivalence of S and S' that ~b is an orbit equivalence of T and 
T', and that (2) holds. 

Similarly, (S, T) and (S', T') are factor isomorphic iff there is an isomorphism 
~b: X--+ X' of T and T', and a measurable map x --+ r~ from X into 9°,, such that 
(2) holds and p'({r, (i)}) = p({i}) for a.e. x E X, i = 1 , . . . ,  n. In this case we have 
sx = 1 a.e., which implies that o'{~.,~,<,>> = ~r~<x) a.e. and (2) reduces to 

']"Tx O'x ')" x 1 =  O'¢~(x ) a . e .  

Our classification argument proceeds in three steps. First we define, for each 
subgroup G of 9°,, what we will call the "G-interchange property" for an 
n-point extension, and we show that for each n-point extension S of T there is a 
unique (up to conjugacy) G such that (S, T) is factor orbit-equivalent to an 
n-point extension S' of T' having the G-interchange property. Also, if (S, T) has 
the G-interchange property, and H is conjugate to G, then there is an (S', T') 
factor isomorphic to (S, T) having the H-interchange property. Next we 
construct, for each subgroup G of ~ , ,  an n-point extension having the 
G-interchange property. Finally, we make a slight extension of Dye's theorem to 
show that any two n-point extensions having the G-interchange property are 



VoI. 57, 1 9 8 7  ORBIT EQUIVALENCE AND ERGODIC AUTOMORPHISMS 31 

factor orbit-equivalent. (In this argument we will assume some familiarity with 
the proof of Dye's theorem, as presented by W. Krieger [7].) Thus we will have a 
one-to-one correspondence between factor orbit-equivalence classes of n-point 
extensions of ergodic automorphisms and conjugacy classes of subgroups of 5e,. 

K. Schmidt pointed out (in a conversation) that it can be seen from the 
Connes-Krieger classification result [1] (in the outer periodic case), that any two 
ergodic n-point extensions having the form given in (1), where each o-~ is a 
power of the cyclic permutation (1 2. • • n), are factor orbit-equivalent. If we let 
G be the group generated by ( 1 2 . . .  n), then in our classification, these n-point 

extensions correspond to the conjugacy class containing G. 
Using methods quite different from both those in [1] and those in the present 

work, A. Fieidsteel [3] showed that if H is a compact metrizable group and S, S' 
are ergodic H-extensions of measure-preserving automorphisms T, T', respec- 
tively (i.e., S is defined on X × H by S(x,  h)  = (Tx, o ' (x )h) ,  where x ~ o-(x) is a 
measurable function from X to H, and S' is defined similarly in terms of T' and 
another function x'---> o"(x') from X'  to H), then (S, T) and (S', T') are factor 
orbit-equivalent. Fieldsteei used a metric on sequences of symbols introduced by 
D. Rudolph, and he gave an argument analogous to that of D. Ornstein's proof 
of the isomorphism theorem for Bernoulli shifts. In the present paper, we will 
give a proof of Fieidsteel's theorem using Dye's theorem methods. 

§2. Setting up the correspondence between n-point extensions of ergodic 
automorphisms and conjugacy classes of subgroups of ~o 

Throughout this section, we will let S and S' denote n-point extensions of the 
ergodic automorphisms T and T': 

S(x ,  i) = (Tx,  ,,x (i)) 

S'(x ' ,  i) = (T ' x ' ,  o-~',(i)) 

as in the introduction. 
Let us recall the following. 

DEFINITION. Suppose R is a measure-preserving automorphism of a 
Lebesgue space and A, B are sets of positive measure. Then an invertible 
bi-measurable map U: A ~ B is an R-isomorphism if for a.e. x E A, there is a 
k~ E Z such that Ux = R k'x. (An R-isomorphism is necessarily measure- 
preserving.) 

The first step in the proof of Dye's theorem, as presented in [7], is to observe 
that if R is an ergodic measure-preserving automorphism of a Lebesgue space, 
and A, B are sets with the same positive measure, then there is an R- 
isomorphism from A to B. A basic idea in our extension of Dye's theorem (to be 
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carried out in §4) is to consider special T-isomorphisms which we define next. 
The above observation will then motivate the definition of the G-interchange 

property. 

DEFINITIONS. Let o ' E  St,, let U: A--->B be a T-isomorphism, and let 
x--->k, m a pA to Z so that Ux=Tk ' x  for a.e. x E A .  Then U is a T-g-  
isomorphism for the n-point extension S, if for a.e. x E A, we have g = g~k..,~, 
where for x E X, s E Z, we define g,.,~ as in (3) with the primes removed; or, 

equivalently, 

Sk'(x, i) = (Tk'x, g(i)) for a.e. x E A, i = 1 , . . . ,  n. 

For each subgroup G of 90o, we say that (S, T) has the G-interchange property if 

(i) for a.e. x ~ X, g, E G, 

and 
(ii) if ~ E G  and A , B ~ s ¢  with / z ( A ) = / z ( B ) > 0 ,  then there is a T-g-  

isomorphism from A to B. 

PROPOSmON. For each n-point extension S of T, there is a subgroup G of 90,, 
unique up to conjugacy, for which there is an n-point extension S' of T' such that 
(S', T') has the G-interchange property and is factor orbit-equivalent to (S, T). 
Furthermore, G is transitive iff S is ergodic. 

PROOF. As in [8], we begin by considering an ergodic component  C of the 

"full extension" g of T defined on (X x 90,,/z x q), where q({g})= 1/190,, 1, 
o, E 90., by 

S(x, g)  = (Tx, gxo-). 

Since T is ergodic, C must have the form 

C= U e j x L  

where {Pj}j<~ is a partition of X, and the Fj's are subsets of 90, all having the 
same cardinality. In particular, each Fj ~ $ ; so for each j E / ,  choose ~/j E Fj. Let 

j, k E / .  Since S I C is ergodic, some power of S maps a subset of Pj x {~/j} of 
positive measure to a subset of Pk x {3'k}. Hence there is some g E 5eo such that 

gFj = Fk and g3'j = ~/k, i.e., 3fi~F~ = 3,~Fk. Thus there is a set G C 9°, such that 

~/jaFj = G for all j E L Then we have 

C =  U PJ x TjG. 
j E l  

The above argument shows that 

yi lFj  = ~;-IF~, for all ~j E F t. 
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Hence 

i.e. 

(yT l~ j ) ' y ] - lF j  = 'y;-lI~j for all % E Fj, 

gG = G for all g E G. 

Therefore G is a group. 
Let rx = 2'j 1 for x ~ P ,  j E / .  Define another n-point extension S', by letting 

T ' = T  and or'x=rr, or, r~ 1. Then the map x t t : X × { 1 , . . . , n } - * X x { 1  . . . . .  n} 
defined by (x, i)--> (x, r, (i)) is a factor orbit-equivalence of (S, T) and (S', T). 
(Actually, it is a factor isomorphism if we choose p'({i})--p({~'~l(i)}), which 
turns out to be constant for fixed i, as x varies.) Also, S and S' are isomorphic 
v i a l :  X ×  6e,--* X x ~,  defined by (x, or)--> (x, ~-#r). 

We now verify that (S', T) has the G-interchange property. First observe that 
q~(C) is an ergodic component of S' and 

u x 4;(C)-- X x G. 
\ 

j E I  j E I  I 

Since S' leaves X x G invariant, for a.e. x E X, S'(x, id) = (Tx, or'x) E X x G, i.e, 
or'x E G. Now fix or E G and let A, B E ~¢ with g (A) = /z  (B) > 0. Then, because 
S'] X x G is ergodic, there is an S'-isomorphism mapping A x {id} to B x {or}. 
This implies that there is a T-or-isomorphism for S' mapping A to B. Hence 
(S', T) has the G-interchange property. 

Note that if there is a T-or-isomorphism from A to B and or(i) = j, then there 
is an S'-isomorphism from A × {i} to B x {j}. Hence, if G is transitive, the 
G-interchange property implies that S' is ergodic, and therefore S is ergodic. 
Conversely, if G preserves a proper subset F of ~ , ,  then X × F is a nontrivial 
invariant set for S', and thus S is not ergodic. 

It remains to be shown that G is unique up to conjugacy. Suppose two factor 
orbit-equivalent n-point extensions S of T and S' of T' have the G- and 
H-interchange properties, respectively. Then there must be maps ~b: X - *  X' 
and zt~: X--~ Se, so that (2) is satisfied. Let Z C X and z E Se, be such that 
/z (Z) > 0 and ~'~ = ¢ for all x E Z. We will show that H = zGT -~. Let g ~ G, and 
let A , B  C Z with g ( A ) = / ~ ( B ) > 0 .  Let A ' =  4,(A), B ' =  6(B).  Since S has 
the G-interchange property, there exists a T-g-isomorphism U: A --* B for S. 
Let U': A'---~B' be defined by U ' (x ' )=  6U~b-l(x ') for x ' E A ' .  Then U' is a 
T ' -  ~'gT-Lisomorphism for S'. Hence 1"g~ "-~ E H, and since g E G was arbitrary, 
~'G~ --~ C H. By symmetry ~'-~H~" C G. Therefore H = zGr -~. [] 

PROPOSITION. Suppose an n-point extension S of T has the G-interchange 
property and G is conjugate to H. Then there is an n-point extension S' of T such 
that (S', T) has the H-interchange property and is factor isomorphic to (S, T). 
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PROOF. Let  H = ~-G~ "-l. Then  the n-po in t  extension S '  of T de te rmined  by 
o-'~ = ro'x~ "-~ and p'({i}) = p({'r-l(i)}) has the required  proper t ies .  []  

§3. Cons truc t ion  of e x a m p l e s  

Let G = {~r~ . . . .  , or,,} be a subgroup  of 5e,. We now construct  an n-po in t  

extension S of T having the G- in t e rchange  proper ty .  Let  ( T , X ,  Iz) be a 

(1/m, 1/m . . . .  , 1 /m) -Bernou l l i  shift, i.e. X = {1 , . . . ,  m} z, /x = II~_~ q where  q has 

the distr ibution (1/m, 1/m . . . . .  1 /m)  and if x = (  . . . .  x_~,xo, x z , . . . ) E X ,  then 

(Tx)j  = xj+~. Let  o-~ = o -  s for x @ X  such that  xo=j .  Let  S ( x , i ) =  (Tx, o-x(i)), 

x ~ X, i = 1 . . . .  , n, and let p({ i})=  1/n, i = 1 , . . . ,  n. 

PROPOSITION. The n-point  extension S defined above has the G-interchange 

property. 

PROOF. Let  o" ~ oW,, let (cj)-tH~i_~-t ,  (di)-tt-~)~=j~=~ ~ be sequences  of e lements  

of {1 . . . .  , m}, and let 

(4) 
C = { x  E X :  xj = c,, - ( 1 -  1)_<-j_  <- l -  1}, 

D = { x  @ X :  xj = dj, - ( l -  1)=<j -< l -  1}. 

We will construct  C '  C C and D '  C D with 

1 
~ ( C ' ) =  ~ ( D ' ) - > ~ m  m p, (C)  

and a T - o ' - i s o m o r p h i s m  U: C'---~ D '  for S. 

For  each k ~ Z, let Ik be the sequence  of integers of length 21 - 1 given by 

I~ = ( (2k - 1 ) / +  1, (2k  - 1 ) / +  2 . . . .  , (2k  + l ) l  - 1). 

For  k > 0, let Ck be the set of x E C such that:  

(a) (xs)j~,~ = (d_,_, ,  . . . . .  dr_,), 

(b) (xs)i~,, ~ ( c - , - u , . . . ,  ct-~), if 0 < h < k, 

(C) (Xj)jezh¢ (d-(t-l)  . . . . .  dr-,), if 0 <  h < k, 

(d) ~r~,o-x,_, ' • • o-x2o-x,o-~, = o- where  t = 2 k / -  1. 

Clearly (a) and (c) imply that  the C~'s, k > 0, are pairwise disjoint.  

Let  C '  = U~=~ C~, define U on C '  by/_~ = T 2~t" for x ~ Ck, let Dk = UCk and 

let D '  = U~=~ Dk. Since Ih shifted to the left by 2kl  units is Ih k, we have for 

X ~ Dk,  
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(X,)ic,_~ = (C-,,-1) . . . . .  CO . . . . .  C H ) ,  

(Xj)jElh ~ (C- ( / -1 ) ,  • • • , CO,, . . . .  e l - l )  for 0 < h < k,  

and 

(xs)j~,o = (d_,-,~ . . . . .  do , . . . ,  dH). 

Hence the Dk's, k > 0, are pairwise disjoint subsets of D. This, together with 

condition (d) in the definition of the Ck's, implies that U: C'--->D' is a 
T -  o'-isomorphism. 

We now compute ~(C') .  Note that conditions (a), (b) and (c) in the definition 

of the Ck's do not place any constraints on X(2k-l)l. Also, once we are given xj, 

0 <= j <= 2 k t -  1, j ~  ( 2 k -  1)/, there is exactly one choice of xc_,k t~ to make (d) 

hold. Thus, condition (d) reduces the measure of C' by a factor 1/m of what it 

would be with only conditions (a), (b), and (c). Hence we have 

1 / z ( C ) ,  if (c-~t- , ) , . . . ,  c~ ~) = (d_,~ ,) . . . .  dH),  
m 

~,(c') = 
1 

/z (C), otherwise. 

Now suppose A and B are subsets of X with/z (A) = / l  (B) > 0. Take cylinder 
sets C and D of the form given in (4) such that 

(1) 
. (A  n C)> l-g-m- m .(C), 

Let C' and D '  and U be as constructed above. Then 

and 

Thus we have 

/x (A r] C') > ~-/x (C') 

/l (B f ] D  ') > 3/z (D')  = 3/i (C'). 

and 

~[(A n C')n U-'(B n D')] >~g(C' )> O, 

U ] [(A f] C') f] U-~(B A D')] is a T -  g-isomorphism. 
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Then by Zorn's lemma (or even without it), it follows that there is a T - a -  

isomorphism from A to B. []  

§4. Completion of the classification result 

The one-to-one correspondence between factor orbit-equivalence classes of 

n-point extensions of ergodic automorphisms will be established once we prove 

the following. 

THEOREM. Let G be a subgroup of 5P,. Let S and S' be n-point extensions of 
ergodic automorphisms T and T', respectively: 

S(x,i)=(Tx, trx(i)), x E X ,  i = l  . . . . .  n, 

S'(x' , i)=(T'x' ,<,(i)) ,  x E X ' ,  i = 1  . . . . .  n. 

Then if (S, T) and (S', T') both have the G-interchange property, they are factor 
orbit-equivalent. 

This theorem is proved by modifying the argument in [7], being careful that 

the constructed orbit equivalence ~b between T and T' also makes the 

map',F: X x { 1  . . . . .  n}---~X'×{1 . . . . .  n} defined by ~(x,i)=(4>(x),i) for a.e. 

x E X, i =  1 . . . . .  n a factor orbit-equivalence of (S, T) and (S', T'). For the 

convenience of the reader, we will repeat here some of the definitions given in 

[7], using essentially the same notation. 

DE~mmONS. A T-array a is a quadruple of the form 

(5) a = ( O , A , A ( . ) ,  U ( ' , ' ) )  

where ~ is a finite index set, A ~ ~1, A ( - )  is defined on l'l so that {A (to): to ~ l'l} 

is an ordered partition of A and U ( . , .  ) is defined on l-I × 1~ so that 

U(to, ¢o '): A (oJ) --* A (to') is a T-isomorphism for 00, to' E f l  

and 

U(oJ',aJ")U(~o,~o')(x)= U(~o,o~")(x) fora .e ,  x E A ( ~ o ) ,  ~o,~o',~o"~fl. 

For a T-array a in the form given in (5), we denote the partition {A(to): to ~ f~} 

by ~ ,  and for x U A(~o), we let O,(x)={U(to, a~')(x): aJ'Ei2}. 
Now suppose we are given a T-array a of the form in (5), and for some ~Oo ~ fl  

we are also given a T-array 

t3 = (h,  A (,oo), B ( .  ), V ( . , .  )). 
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Then the refinement of a by means o[ [3 is a T-array 

3' = (f~ x A,A, C( . ) ,  W ( . , . ) )  

where 

and 

= v( too ,  a × A 

w((to, a),(os, -- u(too, to ' )v (x ,  u(to,  too)(X) 

for a.e. x E C(to, h), (to, h), (w', h') E f l  x A. 

For our argument here we will also need the following. 

DEFINITION. Let G be a subgroup of 6e. Then a T-array a = 

( ~ , A , A ( . ) ,  U ( . , . ) )  is a T-G-array for S if there is a function r = 

re: ~ x f ~ - - ~ G  such that for each (to, t o ' ) E l ) x f ~ ,  U(w,w')  is a T-r(to, w')- 

isomorphism for S. 

Note that if a function r: ~ × I ~  G satisfies r = r~ for some T-G-array  a 

with index set f~, then 

(6) r(to', to")r(to, to') = r(to, to"), for to, to', to" E ft. 

Also observe that if a = (~, A, A ( .  ), U ( . , - ) )  is a T-G-array  and for some 

too E fl , /3 = (A, A (too), B(-  ), V(- ,. )) is also a T-G-array,  then the refinement 

3' = (~  x A, A, C( .  ), W ( . , -  )) of a by means of /3 must also be a T-G-array,  

and we have 

r~ ((to, A ), (to ', A ')) = r~ (too, to')re (A, A ')r~ (to, too), for (to,)t ), (to', A ') E f~ × A. 

We now proceed with a series of lemmas, similar to those in [7], which will 

lead to the proof of the above theorem. We assume throughout that G is a 

subgroup of 5e,, S, given by S(x, i) = (Tx, tr, (i)), is an n-point extension of the 

ergodic automorphism T of (X, M, ~),  and S has the G-interchange property. 

We will omit the proofs of Lemmas 1 and 2, which are very easy, and just like the 

corresponding ones in [7]. 

LEMMA 1. Let ( ~ , A , A ( . ) )  be a partition of A E s~ into sets of equal 

measure. Suppose r: f~xl'~---~ G satisfies (6). Then there is a T-G-array a = 

(lq, A,  A ("), U( .  ,. )) such that r = re. 

LEMMA 2. Let a be a T-G-array with index set {0, 1} N, let E ~ M, and let 

e > O. Then there exists, for some L ~ N, a T-G-array/3 with index set {0, 1} ~'÷L 
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which refines ~ and is such that 

(i.e. there is a union F of elements of ~ such that i~(E A F)< e). 

LEMMA 3. Let e>O and let ~ =({0 ,1}N ,A ,A( . ) ,U( . , . ) )  be a T-array. 
Then for some L E N there exists a T-G-array y with index set {0, 1} N÷L such that 
for x in some subset of A of measure greater than (1 - e)/~(A), we have 

Oo(x)c 

PROOF. Fix a,o ~ {0, 1} N. We can partition A (Oao) into sets F, . . . .  , F~ such that 
for each oa E{0, 1} N and each h, 1 =< h = k, there is some cr = o'(h, co) ~ G such 

that U(too, oa)l Fh is a T -  o--isomorphism. Then if L is sufficiently large, there is 

some partition {B(A):A E{0,1} L} of A(~o) such that each F,, l<h<=k,  
contains a collection of sets in {BO):  ,t E {0, 1}'-} whose union covers all but a 

kaction less than e of &.  Then by Lemma 1, there is some T-G-ar ray  

fl =({O, 1}L,A(o~o),B(') ,V(. , ' ))  Let A,={A E{0,1}L: B(A)CFh, some h =  

1 , . . . , k} ,  and let A2={0,1} L -A~. Then if A EA~, to EI~, U(oao, oa)lB(A ) is a 

T-o--isomorphism for some o" = o'()q, to) E G. Also we have 

tx( U B(A))>(1-e) tz(A(°°o))  
AEAI 

and consequently 

" [  U U U(°~o,°))B(A)]>(1-e)l~(A) . 
~ { 0 , 1 }  N ,~EA~ 

We now define a new T-array 6 = ({0, 1} N, A, A ( . ) ,  U ( ' , .  )) by letting 

O(oJo, o~) I B(A): B(A)---> U(coo, w)B(A) 

be defined for to E {0, 1} N - {O~o} by 

O(Wo, o))1 B(A) = U(wo, o))[ B(A) 

and 

(For 

if A EA1 

0(w, ,  o )  I B (X) is any T-or-isomorphism for any or ~ G, if A E A2. 

~o,~o'E{0,1} N, 0(o~,oJ') must then be defined by 0(oJ,~o')= 

U(oo,, oa )U(oao, w) ~.) Let y be the refinement of ci by means of/3. Then y is a 

T-G-array ,  and for x E U~,~{o,1~N U ~ A ,  U(oJo, oa)B(A), 

Oo(x) = O (x)c o,(x). [] 
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LEMMA 4. Let e > 0 and let a = ({0, 1} N, X, A (.), U( ' , . ) )  be a T - G-array. 

Then there exists some L E N and a T-G-array  y with index set {0, 1} N+L which 

refines a and is such that 

~ { x ~ X :  T x ~ O , ( x ) }>  l - e .  

PROOF. Note that if T-G-arrays in this lemma are replaced by T-arrays, 

then we get lemma 6 in [7], which we will use together with our Lemma 3 in,the 

proof here. By lemma 6 in [7], there is an M1 E N and a T-array 6 with index set 
{0, 1} N÷M1 which refines a and is such that 

Ix{x ~ g :  Zx ~ O~(x)}> l - e / 2 .  

Now fix too ~ {0, 1} N and consider the restriction of 6 to A (too) to be a T-array 

with index set {0,1} "'. Then, by Lemma 3, there exists an M2EN and a 

T - G-array /3 on A (too) with index set {0, 1} ~'÷~-~ such that 

O~ (x) N A (tOo) C O~ (x) 

for all x in some subset of A(tOo) of measure greater than (1-e/2~+~)x 

/x (A (too)). 
We take y to be the T-G-array obtained by refining a by means of/3. Then y 

has index set {0, 1} N+L, where L = M, + M2 and 

. { x  ~ x :  Tx ~ Or(x)}_- > .[{x E X: Tx ~ O.(x)} n {x: O~(x)C Or(x)}] 

> l - e .  [] 

PROOF or THEOREM. This proof is very much like that in [7], but here we will 

have to be slightly more careful, because we are not working with a covenient 
prototype (as the adding machine is in [7]). 

Let (Ek)k~N and (E;,)~N be generating sequences of elements of ~ andS ' ,  
respectively, in which each term appears infinitely often. We now produce 

inductively sequences (at)~N and (a'~)t~N of T-G-arrays (for S) and T'-G-arrays 
(for S'), respectively, of the form 

and 

a, = ({0, 1} Nm, X, A, ( . ) ,  Ut (" ," )) 

a'~ = ({0, 1} m'', X', A '~(. ), U~(., .  )) 

having the following properties: 
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(7) 

(i) ct,+~[a/+t] is a refinement of cz,[czl], l ~ N ,  

(ii) r~,=r~i ,  I U N ,  
l / k  

(iii) E~ ~ ~ . . . . . .  k ~ N ,  

(iv) /z{x ~ X :  Tx ~ O .. . . .  (x)}> 1 -  1/k, k @N, 
l / k  

(V) E k ~ ~ , ~  . . . .  k ~ N ,  

(vi) /z{x' E X': T'x' E O~,~(x')} > 1 - 1/k, k E N. 

Suppose k>_-0 and a~,c~z . . . . .  a4k, a'~,a'2 . . . .  , a~k  have been constructed to 

satisfy the above properties. We then apply Lemmas 2 and 4 on the space 

(X, ~¢,/~) to obtain a4~.,-3 refining a4k such that (iii) holds for k + 1 and to 

obtain a4tk+~)-2 refining ~4(k+,-3 such that (iv) holds for k + 1. Next we apply 

Lemma 1 to copy over these refinements of a4~ to the space (X',~C',/.t') to 
! I t obtain a4ck+~)-3 refining a4k, and a4c~÷t)-2 refining a4tk+~)-3' such that (ii) holds for 

l =  4(k + 1 ) - 3  and 4(k + 1 ) -2 .  Then we reverse the roles of (X,M,/z) and 

(X', M',/z'), applying Lemmas 2 and 4 to obtain a~ck÷,-~ refining a~(k+,-z and 

a~¢k+, refining a~t~÷~)_~ such that (v) and (vi) hold for k + 1 and then applying 

Lemma 1 to copy these refinements over to (X, J ,  p.) to obtain a~k÷, ~ refining 

a,~+~-2 and a,~k+~) refining a ,~+,- t  such that (ii) holds for 1 = 4(k + 1 ) -  1 and 

4(k + 1). Thus we obtain sequences of arrays (a,),~N, (a~)~N having all the 

properties listed above. 

We now indicate how to get an orbit equivalence 4~ between T and T' which 

makes the map ff = X ×{1 . . . . .  n } ~  X ' x { 1 , . . . ,  n} defined by 

(8) ~p(x,i)=(4~(x),i) for a.e. x E X, i = 1  . . . . .  n 

a factor orbit-equivalence between (S, T) and (S', T'). For each A E ~1, let [A ] 

denote the equivalence class containing A in the Boolean sigma-algebra ~¢/J¢" of 

measurable sets modulo null sets in ~1, and similarly for A '  E ,d'. Let d be the 

metric on ~¢/~ defined by d([A],[B])= pt(A A B), and define d'  similarly on 

s / ' / / ' .  Then (~¢/~, d) and ( ~ ' / ~ ' ,  d') are complete metric spaces. Thus there is 

an isometry q'P from s1/2( onto ~1'/2¢" preserving all the Boolean operations (i.e. 
ep is a measure-preserving set isomorphism) determined by setting 

qb([A,(to)])= [A',(to)] for to ~{0,1} ""), I ~ N .  

Then there is a measure-preserving point isomorphism 4' : X--~ X'  which induces 

the set isomorphism • (see [9], page 582), i.e. [~b(A)] = qb([A]) for A ~ .~/. 

Fix l ~ N and co,, to~ ~ {0, 1} ~('. We will show that ~b-I U',(to, to~)r~ = 
U, (to~, to~) a.e. on A, (w~). Let m > I and write {0, 1} s~m) = {0, 1} s") × {0, 1}'. Let 
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A E {0, 1} u. Then 

(¢- '  U~(tol, to2)&)Am (to,, h ) = ¢-1Ut(O)l, toz)A "(to1, h ) 

= &-IA :(to2, A ) 

= Am (to2, A) 

= U, (to,, toz)A,, (tol, ,~ ), 

with all of these equalities holding up to a set of measure zero. Since the 

A,, (to,, A )'s generate (as rn and A vary) the restriction of M to A,(to,), this 

implies that (&-lU't(to~, toz)&)(x) = U~(to~, to2)(x) for a.e. x E A,(toO. Thus, for 

a.e. x E X ,  

(9) U',(to,, to2)tb (x) = ok(U, (to~, to2)x) 

for l ~ N, tom, to2 E {0, 1} N"), where to~ is such that x ~ A~ (toO- By (Tiv), for a.e. 

x ~ X ,  

Or (x) = { U~ (to,, to2)x : l E N, to~, to2 E {0, 1} N('), where to1 is such that x E At (to~)}. 

Since each a, is a T-G-array,  this implies that for a.e. x E X, i = 1 . . . .  , n, 

Os (x, i) = {(U~ (to~, to2)x, r~,(to~, to2)(i)): l E N, to,, to2 E {0, 1}N% 

where to~ is such that x E A~(to,)}. 

A similar statement holds for Os,(x',i). From this representation of Os(x, i), 
Os,(X', i), (7ii) and (9), it follows that for the map ~b, defined as in (8), we have 

~(Os(x , i ) )=Os.(~(x , i ) )  fora .e ,  x E X ,  i = 1  . . . . .  n. [] 

§5. Some further remarks 

Let us now consider the case of an uncountable extension of an ergodic 

measure-preserving automorphism T of a Lebesgue space (X,M,I.e). Let 

(X, ~ , /2)  be another Lebesgue space, and let Y = X x X, ~ = M x X, ~ = 
M x ~ ,  v =kt  x/2. Let S be an ergodic measure-preserving automorphism of 

(Y, ~, v) preserving ~3 of the form S(x, ~) = (Tx, 5 r, (~)) for x ~ X, ~ E 3~ where 

(x, 2)--> ff , (£)  is jointly measurable, and for a.e. x E X, J ,  is a measure- 

preserving automorphism of (X, A,/2). Suppose S' and T' are of a form similar 

to that of S and T. Then (S, qg, ~3) and (S', ~ ' ,  ~ ' ) ,  or simply (S, T) and (S', T'), 

are factor orbit-equivalent if there exists a map ~b: X x ) f  ~ X'  x ,~' of the form 

0 o )  4,(x, = (x)) 
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where 4) : X ~ X '  is an orbit equivalence of T and T', for a.e. x E X, ~x : X----~ X '  

is a measure-preserving isomorphism, and for a.e. x ~ X, 

~'rx3-/r~l= J'(~.,~x)) /i-a.e.,  

where the function x --~ s, mapping X--* Z is such that for a.e. x E X, 

ck( Tx ) = ( r')s~( 4)(x )), 

and for x ' E  X ' ,  s E Z, we define 

¢ o7"~ ~ o7- r o7" t | ~, ( r , )  ~- (x')" "" ~, r , x ' ~ , x ' ,  i f  s > 0 ,  

(11) Ji~.x') = J id, if s = 0, 
t -1  0Tt - oT-t -1  L(~ - (T ' ) ' ( x ' ) )  " ' "  (~(T')- '2(x '))  ( ~ ( T ' ) -  x') , i f  s < 0 .  

We now define a property in the same spirit as the G-interchange property.  

DEFINmON. A set C E ~ will be called a preservable strip of width a for some 

a, 0_-< c~ =< 1, if for a.e. x E X, Cx = C N ({x} x X)  has C-measure  a and if 

A, B E sg with tx ( A ) = / x ( B )  > 0, then there exists a T-isomorphism U: A ~ B 

such that if x --~ k~ is defined by Ux = Tk~x for a.e. x ~ A, then for a.e. x E A, 

3-~k~.~)(C~) = Cu~ up to a set of f i -measure zero, where we define J-~,,x) as in (11) 

with the primes removed;  or, equivalently, Sk'(C~) = Cc,~ up to a set of 

f i -measure zero. A nontrivial preservable strip is one of width a, where 

O < a < l .  

It is easy to see that preservable strips get mapped to preservable strips under 

any factor orbit equivalence. Hence having a preservable strip of width a is an 

invariant of factor orbit equivalence. 

We now look at some examples. 

PROPOSFnON. Suppose T is an ergodic measure-preserving automorphism of 

(X, sg,/x), 7" is a Bernoulli shift on (X, s~, ~ ) and S -- T x T. Then (S, T) does not 

have a nontrivial preservable strip. 

PROOF. Suppose 0 < a < 1 and C C X x 3[ is a preservable strip of width a. 

Let R be the equivalence relation x ~ y if there exists some k E Z such that 

Tkx = y and SkC~ = Cy up to a set of g -measure  zero. Then R is hyperfinite. 

(This is easy to see if we use the definition of a hyperfinite equivalence relation as 

being the union of an increasing sequence of finite equivalence relations.) Thus 

there exists some measure-preserving automorphism ]- of (X, s~,/~) such that for 

a.e. x ~ X, {y: (x, y ) E  R} = Ot(x ) .  From the definition of C being preservable,  

it follows that "it is ergodic. Define a function mapping X to Z by x --~ k~, where 
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~'x = Tk~x. Since 7 is ergodic, for a.e. x E X, we have 7"'x # T'x if i, j ~ Z, i # j, 

which implies that the sequence f~, f2 . . . .  defined by 

(12) f~ = kx + k~t~ + " "  + kv, '~ 

consists of distinct integers. Let S(x, f ) =  (~'x, ,~kx)~). Then C is a ~ x / i -a .e .  

invariant set for S. We will reach a contradiction by establishing the following 

(where for convenience we write S and T instead of S and 7"). 

LEMMA. Suppose T is an ergodic measure-preserving automorphism of 
(X, ~d, tz ), T is a Bernoulli shift on (X, sd, (t ), and x ~ kx is a measurable function 
from X to Z such that if f"~ is defined as in (12), for a.e. x @ X, zero appears in the 
sequence [~x, [~,. . .  only finitely many times. Then the transformation S on (X  × X, 
sg x M, i ~ x f~) defined by S(x, "2) = (Tx, ~-kx~) is ergodic. 

PROOF. Let C, D C Jq be cylinder sets (for the Bernoulli shift T) based on 

coordinates - l . . . .  ,0 . . . .  , l, and let A, B ~ J .  We will establish the ergodicity of 
S by showing that 

(13) luim I .=, (/x x/2)[(A x C ) n  S"(B x D)] = t z (A) Ix (B) I i (C)~(D) .  

For each n, we have 

(A xC)NS"(BxD)= U [{T"x}x(Cn Tf:D)]. 
x E T - n A n B  

Also, for a.e. x E X, any fixed integer occurs only finitely often in the sequence 

f'x, f~ . . . . .  Thus, given e > 0, there is some K such that for each x in some set 

G C X  with p . ( G ) > l - - e ,  If:l>2t for each n>=K. Now if [f~"l>2/, 

12(C N ~f'r:D) = 12(C)~(D). Hence for n _-> K, we have 

(/z x/2)[(A x C ) n  S"(B x D)] 

= l i (C) I i (D) t z (T-"A  n B n G ) + S r  "anBn(x-o~ /2(CN "FrZD)dlx(x ). 

Thus, for n = K, 

l(/z ×/2)[(A × C)M S"(B x D ) ] -  12(C)I2(D)I~(T-"A n B)[ < e. 

Since T is ergodic, 

2 Ix (T- 'A  n B ) =  Ix(A)tx(B).  
n = l  
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Thus, for N large, (1/N)5'-,N~1(~ x /2)[ (A x C)A S" (B  × D)] is within 2e of 

/z (A)~  (B)/2 (C)/2 (D). Since e was arbitrary, (13) follows. [] 

REMARK. The same argument shows that if T is assumed to be weakly mixing 

then S is weakly mixing; if T is mixing, then S is mixing. In the ergodic and 

weakly mixing cases, it suffices to assume that for a.e. x E X, zero appears with 

density zero in the sequence [~x, f2x . . . . .  

The above system (S, T) can now be used to construct examples with very 

special types of preservable strips. For convenience in describing these exam- 

ples, we will replace )~ by .g x {1 . . . . .  n} in the set-up given at the beginning of 

this section. 

PROPOSITION. Let T be an ergodic measure-preserving automorphism of 
(X, ~ ,  Ix), 7" a Bernoulli shift on (X, s4,/2), x--~ o'x a measurable map from X to 

5P,. Let ~ be the sigma-field on {1 . . . .  , n} consisting of all subsets of {1 . . . . .  n} 

and let p be the measure p({i})= 1/n for i = 1  . . . . .  n. Define S on 

(X × ()~ × {1 . . . .  , n}), ~ / ×  (~ /×  ~) ,  /.t × (/2 × p)) by 

(14) S(x, (~, i)) = ('Ix, (~-£, trx (i))). 

Then any preservable strip C for (S, T)  is of width m /n  for some m = O, 1 . . . .  , n, 

with lz-a.e. Cx being equal (up to a set of (12 x p )-measure zero) to a union o[ m of 

the sets .~ x {1}, .~ x {2} . . . . .  )( x {n} (which depends on x). 

PROOF. Let C be a nontrivial preservable strip for (S, T) and define R, ~ and 

x ~ kx as in the proof of the preceding proposition. Let 6"x = o-(k~.x), where ~rt,.x) 
is defined as in (3), with the primes removed. Then C is a /z x (/~ x p)-a.e. 

invariant set for the transformation S on X x (.~ x {1 . . . . .  n}) defined by 

$(x, (~, i)) = (Tx, (,~k~, 6-x (i))). 

Now consider the finite extension of T defined on (X x {1 . . . . .  n}, s¢x  ~:,/x x p) 

by 

i15) ix, i ) ~  i~-x, ~ (i)). 

Let D C X x { 1 , . . . ,  n} be defined by 

D = {ix, i):/2[C~ n (27 x{i})]>0}. 

Then D is invariant under the map given in (15). Thus, by the ergodicity of T, 

there is some m ~ {1 . . . . .  n} such that 

card{i E {1 . . . . .  n}: (x, i) E D} = m for/x-a.e,  x, 
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and we can write D as a disjoint union of sets D 1  . . . .  , Din, where each Di is 

contained in an ergodic component for the map in (15), and each Dj satisfies 

card{i ~ {1 . . . . .  n}: (x, i) E Dj} = 1 for Iz-a.e.x. 

Let Cj = C N/gj, j = 1 , . . . ,  m, where 

= {(x, i)): (x, i) o j ,  

Because Dr is contained in an ergodic component for the map in (15), it follows 

that Cj is itself a preservable strip for (S, T). Let Ej C X × X be given by 

Ej = {(x, £): (x, (.f, i)) E Cj for some i = 1 . . . . .  n}. 

Then Ej is a preservable strip for (T × T, T). Hence, by the preceding proposi- 

tion, Ej must be (/x × ~)-a.e. equal to X × X .  Therefore we have C~ =/gj  
x (/2 x p)-a.e. [] 

PROPOSmO~. Let (S, T) be as in the preceding proposition. Then X × 
()~ × {1 . . . . .  n}) can be covered by pairwise disjoint preservable sets [or (S, T) o[ 
width 1/n. 

PROOF. The space X × {1, . . . ,  n} can be covered by pairwise disjoint sets 

D 1 , . . . , D ,  such that each Dj is contained in an ergodic component for the 
transformation on X × {1 . . . . .  n} given by (x, i)---~ (Tx, ~rx (i)), and for a.e. x and 

each j = l  . . . . .  n, c a r d { i : ( x , i ) E D j } = l .  For j = l  . . . .  ,n, let C j=  

{(x, (£, i)): (x, i) E Di, £ E )~}. Then C~ . . . . .  C, are pairwise disjoint and each C~ 
is a preservable strip for (S, T) of width 1/n. [] 

The existence of preservable strips of width 1/n and no preservable strips of 
widths other than multiples of 1/n for the systems (S, T) considered in the last 
two propositions already gives (as we let n vary) infinitely many factor 

orbit-equivalence classes. But note also that if (S, T) and (S', T') are of the form 
given in (14) (with the same n, but possibly different x--~ o'x and x'---~ o'~', and 

possibly different Bernoulli shifts T and T') then any factor orbit-equivalence 
between (S, T) and (S', T') must be of the form given in (10), with X and X'  

replaced by .~'×{1 . . . . .  n} and X ' × { 1  . . . . .  n}, respectively, where for a.e. 

x E X, there is some % ~ Sen such that for i = 1 . . . . .  n, 

rx (X × {i}) = X'  × {% (i)} (/~' × p)-a.e. 

Therefore, a necessary condition for (S, T) and (S', T') of the form given in (14) 

to be factor orbit-equivalent is that the corresponding n-point extensions 

(x, i)---> (Tx, ~rx (i)) and (x', i)---~ ( T' x, o"~(i)) be factor orbit-equivalent. 
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§6. Factor orbit equivalence of compact group extensions 

Let H be a compact metrizable group, and let T be an ergodic measure- 

preserving automorphism of a Lebesgue space (X, ~ ,  it). Then an H-extension of 

T is an automorphism S of Y = X × H of the form S(x, h) = (Tx, o'(x)h), where 

o-: X--> H is measurable. 

THEOREM [3]. Let H be a compact metrizable group with Haar measure p, and 

let S and S' be H-extensions of T and T' which are ergodic with respect to it x p 

and it' × p, respectively. Then (S, T) and (S', T') are factor orbit equivalent. 

Fix a right-invariant metric d on H, and let ~3(h; e) denote an open ball of 

radius e about h in H. 

DEFINITION. Let N C H .  Let A, B E s ~  and let U : A ~ B  be a T- 

isomorphism. Then U is a T -  N-isomorphism for the H-extension S if for a.e. 

x E A, we have ¢r(kx, x) E N, where k~ satisfies U(x)  = Tk'x, and for x E X, 

s E Z, we define tr(s, x) as in (3) in §1. 

DEFINITION. Let a = (~, A, A ( ' ) ,  U ( - , .  )) be a T-array, as defined in §4. Let 

~ooEfl, r: l)\{tOo}--~ H, e = e ( t o ) > O  for aJEf~\{too}. Then a is a T - H -  

(r, Wo, e)-array if for each ¢o E~\{~oo}, U(~oo, o~) is a T-~(r (o~) ;e (o~) ) -  

isomorphism. 

LEMMA 1. Let e > 0 and let (12, A, A (-))  be a partition of A ~ s¢ into sets of 

equal measure. Let wo ~ f t  and r: f~\{Wo}~ H. Then there is a T - H-(r, ~oo, e)- 
array a = (~, A, A ( -  ), U ( . , .  )), where e = e(o)) = g for all oJ ~ f~\{~oo}. 

LEMMA 2. Let a = ( I L X ,  A ( ' ) ,  U( .  , . ) )  be a T-array. Assume Ft={0,1} N. 

Let g > O and let E ~ s¢. Then there exists a T-array ~ = 

(A,A(w, , ) ,B(-) ,  V ( . , . ) ) ,  A={0,1}L, such that the refinement 3" = 

(12 x A, X, c¢(. ), W(- ,. )) of a by means o[ [3 satisfies the following conditions: 

(i) i t { x ~ X :  T x E ( ~ , ( x ) } > l - g ,  

(ii) E E P ,  and 

(iii) if we .fix a choice of AoEA, then for each A EA\{Ao}, V(Ao, A) is a 

T -  3~(f(A ), g)-isomorphism [or some g(A ) E  H. 

LEMMA 3. Let a =(fI ,  X , A ( . ) , U ( . , . ) )  be a r - H - ( r ,  ooo, e)-array. As-  

sume ~ = { 0 , 1 }  N. Let g > O. Then there exists a T-array [3= 

( A , A ( w o ) , B ( - ) , V ( . , ' ) ) ,  A={0,1}  L, such that the refinement 3'= 

( f l x  A, X, c~ ( . ) ,  W ( .  , . )) of a by means of [3 satisfies the following conditions : 

(i) There exists a subset A, C A with card A~ > (1 - g) card A such that [or 
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A ~ m l ,  oo ~ ' ~ ,  U(o)o, Og)lB(A ) is  a T-~(F(o),A),g)-isomorphism for s o m e  

~(~o, h) (7_ H with d(F(o), h), r(~o)) < e(oo), a n d  

(ii) For all A, h ' ~  A, V(A, A') is a T -  N(id , ,  i)-isomorphism. 

PROOF OF THEOREM. Let (E~)~ =L:,... and (E ~)~ =L2,... be generating sequences of 

elements of d and d ' ,  respectively, in which each term appears infinitely often. 

Let "q~ satisfy 0 < ~/~ < t and X~=~ ~/~ < ~. Let e~ be such that 0 < e~ < ~/~ and if 

g, g~, h, h, ~ H with d(g, g~) < e~, d(h, h~) < e~ then d(gh -~, g~h~ l) < "q~. We will 

define inductively sequences (~t)t L~.._ and (a'~)~=t,~ of T-arrays and T'-arrays, 

respectively of the form 

and 

a, = ({0, 1} ~"', X, At ( .) ,  G ( . , . ) )  

a'~ = ({0, 1} N''', X', A't(.), U',(.,. )) 

such that at+l[a[+~] is a refinement of at[a't], l= 1,2 . . . . .  

For each l = 1, 2 . . . . .  we have one index ~o.~ E {0, 1} Nm such that At+~(o)o.t+~)C 
At(ooo,,) and A[+~(osoj+~)CA'~(o)o.,). Also, for / = 1 , 2  . . . . .  a,[a'~] is a T - H -  
(rt[r'~], o),,,t, ~t)-array, where rz[r'~]: {0, 1}m~\{o),,.t}--->n and 3t = 3t(oJ)>0 for 

w ~ {0, 1}m'~\{o)o,,}. We let rt (wo, t )=  id , ,  r'~(o),,.,)= id , ,  and ~, (o9o.~)= 0. We will 

carry out a construction such that for all w in a subset of {0, 1} Nm whose 

cardinality is greater than ( 1 -  15~) of card({0, l}Nm), 6t(09)< 3~, where 

{ e~/3, if l = 3 k - 2 ,  

~ = 2e~/3, i f l = 3 k - 1 ,  

e ~ ,  i f  l = 3k, 

k = 1 , 2  . . . . .  

For l = 1.2 . . . . .  define 0r: X---> H by 

or ( x ) = r~( ..,,.,. . ,  )r, ( o~,,.,, o~ )- ', x E Ai (~o). 

We alternatingly refine the o~ and a't arrays using Lemmas 2 and 3. Assume 

the arrays have been constructed for l = 3k - 3. (We may take ao and a~, to be 

trivial arrays.) To go to the l = 3k - 2 stage, we apply Lemma 3 with g such that 

~ < e ~ / 3 ,  and d(g, i d . ) < g  and d(h,h,,)<~ imply d(gh, ho)<ek/3. Let 1)= 

{0, 1} N~3k-3~, too = 0,)0,3k-3, {0, 1} N(3k-2~ = [~ × A, o)o.3k-_. = (too, ho) for some ho E A~, 

{ ~(ro, h) for o) ~ 1-~\{o9,,}, A~A~, 

r3k-do),A) = r3~_3(~o) for ~o E~l\{~Oo}, hffA~, 

id .  for o9=~oo, A ~ A ,  
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and similarly for the "prime" space. By labeling appropriately, we may use the 

same A0 and A1, but different ~'s, for the construction of a3k-2 and a;k-2. Then 

63k-2(to, A)< ek/3 except for a set of (to, A) of cardinality less than ek/3 of 

card(fl × A). Also d(r3k 2(to, A), r3k-,.(to)) < ~3k-3(to) for all (to, A) G [l × A, and 
similarly for r'. Consequently, d(O3k_2(x), 03k-3(x))< ~k-1 except for x in a set of 

measure less than e~-~. 

We now use Lemma 2 to get a3~-1 from a3k-2 with/z{x E X: Tx E 6~3k_,(x)} > 

1 - 1/k, Ek C ~ .... and condition (iii) of Lemma 2 is satisfied with ~ chosen so 
that g<ek/3 and d(h, ho)<g imply that d(gh, goho)<2ek/3. Let ~ =  
{0, 1} ut3k-2), too = to0.3k-e, {0, 1} N~3k-l) = ~ × A, too.3k-I = (tOo, Ao), and r3k-l(to, A) = 

r3k-2(co)f(A) for all (to, A)~  f /×  A, where we let f(Ao)= idu. The a;k-~ array is 

produced by refining a;k-2 so that (iii) (but not (i) and (ii)) of Lemma 2 holds with 

the same f(A) function. (This is possible by Lemma 1.) Then r3~_~(to, A)= 
r;k_2(to)~(A), ~3k-~(to, A) < 2e~/3 except for to in a subset of cardinality less than 

ek/3 of cardi), and 03k-~(x)= 03k-2(x) for all x. 
Finally; we reverse the roles of the "prime" and "nonprime" arrays in the 

preceding step. We apply Lemma 2 to get ct~k (analogously to a3k-i above) with g 

chosen so that g < ek/3, and d(g, g0)<2e~,/3 and d(h, ho)< g imply that 

d(gh, goh0)< e~. Then apply Lemma 1 to get ot3k (analogously to a;k-t). Then 

~3k (0.), /~) <~ ~k except for to in a subset of cardinality less than e~/3 of card fl, and 

03k (x )=  03k-~(x) for all x. 
Clearly Or(x) converges a.e. to some O(x). Let q~: X--->X' be the orbit 

equivalence between T and T' arising from the at, a'~ arrays (as in §4). Then 

(x, g)--~ (~x, O(x). g) is an orbit equivalence between S and S'. [] 
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